
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007 1379

Multiple-Input-Buffer and Shared-Buffer
Architectures for Optical Packet- and

Burst-Switching Networks
Konstantinos Yiannopoulos, Kyriakos G. Vlachos, Member, IEEE, and Emmanouel Varvarigos

Abstract—We present an architecture for implementing optical
buffers, based on the feed-forward-buffer concept, that can truly
emulate input queuing and accommodate asynchronous packet
and burst operation. The architecture uses wavelength converters
and fixed-length delay lines that are combined to form either a
multiple-input buffer or a shared buffer. Both architectures are
modular, allowing the expansion of the buffer at a cost that grows
logarithmically with the buffer depth, where the cost is measured
in terms of the number of switching elements, and wavelength
converters are employed. The architectural design also provides
a tradeoff between the number of wavelength converters and their
tunability. The buffer architectures proposed are complemented
with scheduling algorithms that can guarantee lossless commu-
nication and are evaluated using physical-layer simulations to
obtain their performance in terms of bit-error rate and achievable
buffer size.

Index Terms—Input queuing, optical buffers, optical packet and
burst switching, programmable delays, wavelength converters.

I. INTRODUCTION

O PTICAL buffering is an important functionality in optical
packet- and burst-switched (OPS/OBS) networks. It al-

lows the temporary storage of data packets and bursts to resolve
contention at the switch outputs. Various solutions have been
proposed up to date including programmable delay lines [1]–[4]
and optoelectronic conversion schemes [5]. Electronic buffer-
ing has been extensively utilized in currently installed optical
networks; however, it is limited by the electronic processing
speeds and the relatively slow O/E and E/O conversion times.
Moreover, the cost and complexity associated with O/E/O
conversions may be alleviated in optical-buffering schemes
through component miniaturization and integration [6];
an integrated optical buffer has been recently reported [7].
Optical buffers that are based on programmable delay lines
maintain the advantages of lower energy per written/read
bit and smaller power dissipation, as compared to electronic
buffers [8], and have been extensively used to form feed-
forward or recirculating architectures employing, in addition,

Manuscript received December 1, 2006; revised February 14, 2007. This
work was supported in part by the Operational Program for Educational and
Vocational Training (EPEAEK), PYTHAGORAS II Program, and in part by
the European Union via the IST/NoE e-Photon/ONe+.

The authors are with the Computer Engineering and Informatics Department
and with the Research Academic Computer Technology Institute, University of
Patras, 26500 Rio, Greece (e-mail: kvlachos@ceid.upatras.gr).

Digital Object Identifier 10.1109/JLT.2007.896804

wavelength conversion to enhance buffering capabilities
[9], [10]. Most schemes, however, assume slotted operation
[1], which requires complex scheduling algorithms and, thus,
are not suitable for asynchronous optical packet and burst
switching. In particular, feedback loops theoretically provide
infinite storage time, but they suffer from noise accumulation
and optical signal-to-noise-ratio (OSNR) degradation. Further-
more, they require that the length of the feedback loop matches
exactly the packet/burst duration in order to avoid loss of
synchronization and that a large number of them are used to
keep the blocking probability small. In contrast, feed-forward
delay-line buffers are easier to implement, since the difference
in the length of optical paths has to match a segment of the
packet/burst duration (timeslot). Moreover, even though feed-
forward delay-line architectures allow for short buffering times,
recent studies indicate that statistically multiplexed optical
networks will require only minimal buffering [11], provided
some traffic engineering is performed. For these reasons, feed-
forward delay-line buffer architectures seem to be a more
practical solution for implementing limited optical buffering in
packet/burst-switched networks.

Within this context, we present in this communication an
architectural design for optical buffers, based on the feed-
forward-buffer concept that can truly emulate input queuing
and accommodate asynchronous packet and burst operation.
The architectural design uses wavelength converters and fixed-
length delay lines to internally route packets and bursts. These
are combined together to form either a multiple-input buffer
design, where a separate input buffer is employed per input
port, or a shared-buffer design, where the same optical buffer
is shared by all input ports. The latter significantly decreases
the individual number of fiber delays needed. Both schemes
are modular and are engineered to allow for the logarithmical
increase of the buffer complexity and cost as a function of
the buffer size. Moreover, as we show later on, the use of
multiple wavelengths to route internally data bursts signifi-
cantly reduces the number of delay stages needed and, thus, the
number of wavelength converters. The architectural designs are
complemented with physical-layer simulations to derive their
design parameters (achievable buffer size) and illustrate their
efficient performance in terms of bit-error rate (BER). In our
analysis, we have assumed a wavelength-tuning range of w and
investigated the cascadability of s stages.

The rest of this paper is organized as follows. Section II
discusses the multiple-input-buffer design that consists of

0733-8724/$25.00 © 2007 IEEE

1380 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

parallel timeslot-interchangers (TSIs) and emulates input queu-
ing. The buffer complexity and the number of stages grow
optimally (logarithmically) with the buffer depth. Although
previously reported work has also achieved logarithmic growth
with respect to the number of stages [12], [13], we calculate
for the first time to our knowledge the exact dependence of the
logarithm base on the tunability of the wavelength converters
to further reduce the required number of stages. We show that
approximately 50% of the wavelengths available for internal
switching contribute to this reduction. We also discuss the
implications of deploying the buffer in an OPS/OBS node
and provide a scheduling/contention-resolution algorithm to
achieve lossless communication. In Section III, we present the
shared-buffer design that emulates distributed buffering among
all incoming/outgoing links of the optical switch. Similar to
the previous buffer architecture, the number of stages grows
logarithmically with buffering time (depth), but distributed
buffering reduces the number of wavelengths that are available.
As a result, more stages are required to construct the buffer.
Still, the second architecture achieves lossless performance un-
der less-strict requirements on the traffic conditions. This paper
concludes with Section IV, which discusses the realization of
the aforementioned architectural designs and investigates their
efficient error performance versus the number of delay stages
employed.

II. MULTIPLE-INPUT BUFFER ARCHITECTURE

In the current section, we discuss the architecture of a
feed-forward buffer that is capable of storing optical packets
and bursts. Storage is accomplished by delaying the packets/
bursts, and variable storage times are feasible by introducing
programmable-delay elements inside the buffer. To facilitate
our analysis, we assume that time is divided in timeframes,
and packets/bursts are confined within their limits. We further
assume that the timeframe contains T timeslots and that each
packet/burst asynchronously occupies a number of consecutive
timeslots. Under this scheme, providing that variable storage
time for the packets/bursts is readily translated to interchanging
timeslots. To this end, the buffer is equivalent, in terms of
functionality, to k parallel TSIs: one per input port of the buffer,
as shown in Fig. 1(a).

Each TSI constitutes an input buffer of size T and con-
sists of s serially connected programmable-delay stages, as
shown in Fig. 1(b). The architecture takes advantage of the
wavelength parallelism to minimize the number of stages and,
consequently, the hardware cost. A tunable-wavelength con-
verter (TWC), with a tuning range of w wavelengths, is posi-
tioned at the input of the each delay stage. The TWC assigns
packets/bursts to wavelengths based on the delay line that the
packets/bursts must access in the delay bank. Mapping between
wavelengths and delay lines is achieved by means of a pas-
sive wavelength demultiplexer, while a wavelength multiplexer
feeds the delayed bursts to the next stage. The delays D(i, j)
that are introduced at stage i are a design parameter of the
proposed architecture. These will be calculated in the following
section, after introducing the space–time graph of the input-
buffer architecture [14].

Fig. 1. (a) Multiple-input-buffer architecture. (b) Structure of each stage in
the input-buffer. λ-conv is the TWC, and λ-MUX/DEMUX are the wavelength
multiplexers and demultiplexers, respectively.

A. Formation of the Space–Time Graph

The space–time graph of the proposed design consists of
nodes that are located at columns and rows, as detailed in
the study in [14]. Columns i and i + 1 represent the in-
puts and outputs, respectively, of input-buffer stage i, while
rows account for the timeframe slots. For example, the node
that is located at row j and column i on the space–time
graph represents the jth timeslot of the input of stage i. From
a space–time graph perspective, incoming packets/bursts are
viewed upon as occupying a number of consecutive timeslots
at the graph input. Packets/bursts are buffered at each stage
after accessing the delay line that equals their storage time. This
is represented on the space–time graph by solid lines (time-
transitions) that connect timeslot nodes at the inputs and outputs
of the respective stage. Time transitions connect the input nodes
to output nodes at subsequent rows, since packets/bursts may
only be delayed at each stage.

Buffering a packet/burst in the proposed design for a given
duration corresponds to a path on the space–time graph, with
origin of the node representing the input-slot pair on which
the packet arrived and destination of the node representing
the output-slot pair where the packet/burst leaves. Taking into
consideration that multiple bursts/packets arrive at the buffer
inputs within a timeframe, it follows that an interconnection
pattern which maps input to output timeslots is formed on
the space–time graph during each timeframe. Our goal in this
section is to engineer the time transitions, or, equivalently, the
delay times D(i, j), at each stage so that the interconnection
pattern formed contains a logn–Benes graph as a subgraph.
The logn–Benes graph is derived from the log2–Benes graph
after replacing the 2 × 2 switches with nxn crossbars and
is a well-known rearrangeably nonblocking interconnection
topology.

The purpose of constructing the logn–Benes space–time
graph is many-fold: The implementation requires a minimal
number of serially connected stages that equals

s = 2 · m − 1 = 2 · �logn T � − 1 (1)

YIANNOPOULOS et al.: MULTIPLE-INPUT-BUFFER AND SHARED-BUFFER ARCHITECTURE FOR OPS/OBS NETWORK 1381

Fig. 2. Derivation of the elementary crossbar size on the space–time graph.
The number of timeslots that are located at the next stage of the input-buffer
and which may be accessed by a timeslot located at the current stage equals
the number of available wavelengths w. The crossbar that connects timeslots
between successive stages is formed so that all input timeslots may access all
output timeslots.

for a given number T of timeslot per timeframe. Equation
(1) shows that by implementing the logn–Benes space–time
graph, one can achieve a drastic reduction in the number of
stages, compared to previously reported [12], [13]. This is
of particular importance when considering the hardware cost
of the implementation. Moreover, as we will show later in
Section IV, physical-layer impairments, such as timing jitter
and the patterning effect, aggravate the optical-signal quality
as the number of cascaded stages increases. Furthermore, the
Benes space–time graph provides optimal (logarithmic) scala-
bility with respect to the timeframe size T and is rearrangably
nonblocking; thus, the proposed design is capable of storing
packets/bursts without suffering internal collisions. Finally,
finding collision-free paths within the Benes graph is a well-
studied problem [15].

The building blocks of the logn–Benes graph are nxn cross-
bar switches, and thus, the first step for constructing it is to
determine the size of the crossbars. The crossbars are formed
out of time transitions on the space–time graph, as shown in
Fig. 2, which corresponds to the first stage (stage 0) of the
buffer. Input packets/bursts that have arrived within timeslots
{1, . . . , n} may all access output timeslots {n, . . . , w}, since
time transitions to preceding timeslots are not allowed. Thus,
the total number of output timeslots that are available to all
n input timeslots is limited to w − n + 1. The crossbar inputs
equal the crossbar outputs, and we find that the crossbar size is

n = w − n + 1 ⇔ n =
⌊

w + 1
2

⌋
(2)

with 	x
 denoting the integer part of x. Equation (2) shows that
approximately 50% of the available wavelengths contribute to
the formation of the crossbars that comprise the logn–Benes.

The second step for constructing the logn–Benes graph is to
determine the time transitions that form the graph’s crossbars in
the respective stages. The process is shown in Fig. 3(a) for the
first and second stage of the input buffer, as well as in Fig. 3(b)
and (c), where the network of Fig. 3(a) is transformed to a

Fig. 3. Formation of the logn–Benes subgraph on the space–time graph. The
nxn virtual switches at stage i are formed out of nodes that lie ni timeslots
apart.

standard representation. The formation of the logn–Benes graph
crossbars requires that at each stage i, time transitions connect
timeslots that are located ni positions apart. This corresponds
to setting the switch time delays, in timeslots, equal to

D(i, j) = j · ni, i = 0, . . . ,m − 1, j = 0, . . . , w − 1.
(3)

The delays account for all time transitions on the space–time
graph, even though only n time transitions per timeslot node
contribute to the formation of the virtual crossbars. The re-
maining w − n inactive transitions introduce a constant delay,
after which, the output timeframe commences [white squares in
Fig. 3(a)]. At the output of each stage, the delay equals

∆i = ni · (n − 1), i = 0, . . . ,m − 1 (4)

timeslots, and as a result, the minimum total delay that the
packets/bursts experience when traversing the buffer is

∆ =
m−1∑
i=0

ni · (n − 1) +
m−2∑
i=0

ni · (n − 1)

=nm + nm−1 − 2

=T +
T

n
− 2 (5)

timeslots. Equation (5) may be viewed upon as constant storage
latency introduced by the buffer.

1382 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

Fig. 4. Scheduling algorithm for the multiple-input-buffer architecture.

B. Asynchronous Operation in a Lossless OPS/OBS Node

The multiple-input buffer design provides lossless storage for
packets/bursts that arrive at the incoming links of an OPS/OBS
node within a timeframe T . However, the parallel TSIs do not
spatially interconnect, and thus, the design is not capable of
switching packets/bursts between input and output links of the
OPS/OBS node. This shortcoming is addressed by deploying a
space switch between the buffer outputs and the node outgoing
links. The logn–Benes subgraph of the time–space graph that
represents the buffer ensures that there are no collisions inside
the buffer, but still, collisions may occur at the outputs of
the space switch if two or more packets/bursts simultaneously
require accessing the same output. A scheduling algorithm is,
therefore, required at the node control plane to arbitrate poten-
tial packet/burst collisions. We illustrate a suitable scheduling
algorithm in Fig. 4. According to the algorithm, the output
frame is partitioned into k successive subframes of equal du-
ration. Packets/bursts arriving over incoming link p and head-
ing for outgoing link q are scheduled in the output subframe
(see Fig. 4)

S =
{

q − p + 1, q ≥ p
k + p − q + 1, q < p.

(6)

Equation (6) dictates that packets/bursts that head for a par-
ticular outgoing link are scheduled to different subframes, de-
pending on the link on which they arrive. As such, packet/burst
collisions are avoided, provided that the total duration of
packets/bursts dpq (measured in timeslots) that arrive over link
p and heading for outgoing link q does not exceed the subframe

dpq ≤ T

k
, 1 ≤ p, q ≤ k. (7)

Equations (6) and (7) provide an algorithm for scheduling
packets/bursts without losses. Following the discussion of
Section II-A, packets/bursts are scheduled after being converted
to the appropriate internal wavelength and accessing the respec-
tive delay line at each programmable-delay stage. As a result,
scheduling requires that the state of wavelength converters have

Fig. 5. Routing in the logn–Benes network.

to be set prior to sending the packets/bursts to the buffer. From a
space–time graph perspective, (6) defines the timeslot patterns
at the input and the output stages of the logn–Benes network for
one timeframe. Thus, setting the internal wavelengths is equiv-
alent to calculating the state of the crossbars in all intermediate
stages of the logn–Benes graph so that the input timeslot pattern
is routed to the respective output.

To perform routing in a logn–Benes graph, we propose
to use a modified parallel-routing algorithm that extends the
parallel-routing algorithm on a binary Benes graph [15]. The
algorithm involves setting the state of the outermost crossbars
(at stages 0 and s−1) of the Benes graph, given the respective
timeslot patterns. The outermost crossbars are then omitted,
and the remaining network is partitioned into multiple Benes
graphs of reduced size. The algorithm is recursively applied on
the resulting graphs until the state of all crossbars is set. An
example of the routing algorithm is detailed in the following
section.

C. Benes Routing in the logn–Benes Network

A routing example for the logn–Benes network is illustrated
in Fig. 5 for n = 3 and T = 9. The timeslots at the input of the
buffer (stage 0) are assigned successive n-ary values, and the
respective input permutation vector is formed. The permutation
vector that corresponds to the output of the buffer (stage s−1) is

YIANNOPOULOS et al.: MULTIPLE-INPUT-BUFFER AND SHARED-BUFFER ARCHITECTURE FOR OPS/OBS NETWORK 1383

formed in a similar fashion, after taking into account the results
of the scheduling algorithm. In the example of Fig. 5, the input
and output permutation vectors are

πin = (00 01 02 10 11 12 20 21 22)

πout = (02 21 22 20 00 11 01 10 12). (8)

We first focus on the input permutation vector. After exiting
stage 0 on the space–time graph, the input permutation vector
becomes

π0 = (0a8 0a7 0a6 1a5 1a4 1a3 2a2 2a1 2a0).
(9)

Equation (9) corresponds to time transitions with ai denoting
the output nodes that have been accessed. In a similar fashion,
the output permutation vector at the input of stage s is

π2 = (0b2 2b7 2b8 2b6 0b0 1b4 0b1 1b3 1b5)
(10)

with bi referring to the input nodes that have been accessed
by the inverse time transitions. In (10), bi are assigned to rows
according the output permutation vector, due to the symmetry
of the logn–Benes graph [15]. Moreover, the symmetry of the
network implies that ai and bi that are located in a common
row are equal, and as a result, T equations that correlate ai

and bi are derived. The equations are solved after taking into
consideration that ai (and bi) satisfy

am·n+i = am·n+j , i = j, i, j ∈ {0, 1, . . . , n − 1} (11)

so that no collisions occur inside the crossbars. The solution to
the equations for the example of Fig. 5 is evaluated as

π0 =(02 01 00 12 10 11 21 20 22)

π2 =(02 21 20 22 00 11 01 10 12). (12)

After solving the equations for the outermost stages of the
logn–Benes graph, we remove the aforementioned stages and
divide the remaining graph into three (n in general) subgraphs.
The permutation vectors of each subgraph are derived from
(12) after grouping together the vector elements that correspond
to the same subgraph or, equivalently, have a common least
significant symbol

π0
in = (0 1 2) → π0

out = (2 0 1)

π1
in = (0 1 2) → π1

out = (2 1 0)

π2
in = (0 1 2) → π2

out = (0 2 1). (13)

No further permutation vectors have to be evaluated for the
specific example, since the permutation vectors of (12) and (13)
suffice to define the state of the crossbars at all stages.

The state of the crossbars at each stage l is set after taking
into account the least significant symbols of the input and
output permutation vectors that correspond to stage l. We

assume that the aforementioned symbols form the reduced
permutations vectors ρin

l and ρout
l ; for instance, these are

ρin
0 = (0 1 2 0 1 2 0 1 2)

ρout
0 = (2 1 0 2 0 1 1 0 2) (14)

for stage 0 in our example. It is straightforward to verify from
Fig. 3(a) that routing inside the logn–Benes graph corresponds
to setting the delays at each stage equal to

dl = ∆l +
(
ρout

l − ρin
l

) · nl, 0 ≤ l < s (15)

where ∆i is given by (4). This is equivalent to setting the
wavelengths of the respective wavelength converters equal to

wl = n + ρout
l − ρin

l , 0 ≤ l < s. (16)

An advantage of the parallel-Benes-routing algorithm re-
lies on its low complexity, which leads to small execution
times when the algorithm is implemented in hardware. An
initial implementation of the algorithm on Xilinx Virtex-II
FPGAs for w = 3 and T = 16 achieved execution time equal
to 100 ns. This result is comparable to the duration of a
frame of length T = 10 slots, where each slot carries a single
asynchronous transfer mode cell at 40 Gb/s (10.6 ns).

III. SHARED-BUFFER ARCHITECTURE

In the previous section, we discussed a buffering architecture
that involves deploying one buffer per input. The architecture
is optimal as far as the number of delay stages is concerned,
but it requires the data traffic that arrives at the buffer to be
equally distributed among its inputs, according to (6). In the
current section, we discuss a shared-buffer architecture that re-
quires less strict traffic conditions for lossless operation. Shared
buffering is achieved by dedicating a number of wavelengths
to spatially interconnect the parallel TSIs of the multiple-
input-buffer design. The new design is shown in Fig. 6(a) and
consists of serially interconnected programmable-delay stages
in which the delay bank is accessible to all input ports, as
detailed in Fig. 6(b). At each delay stage, k parallel wavelength
converters assign the incoming packets/bursts to wavelengths
that correspond to a pair of delay lines and output ports. The
delay lines and output ports are accessed by the packets/bursts
through all-passive space switches. Similar to Section II, our
goal is to engineer the delays D(i, j) that must be introduced
at each stage so that the resulting space–time graph contains a
Benes interconnection network as a subgraph.

A. Formation of the Space–Time Graph

The space–time graph for the first stage (stage 0) of the
shared-buffer architecture is illustrated in Fig. 7. In contrast to
the space–time graph of the multiple-input-buffer architecture,
each timeslot node in the space–time graph of the current
architecture includes k separate space nodes that correspond
to the delay-stage inputs and outputs, as illustrated at the inset

1384 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

Fig. 6. (a) Shared-buffer architecture. (b) At the respective stages, each
wavelength is assigned to a pair of delays and output ports. The normalized
wavelength tunability wa is defined as the ratio of the available wavelengths w
to the number of input/output ports k.

Fig. 7. Derivation of the elementary crossbar on the space–time graph. Each
node of the space–time graph representing timeslots is expanded to k separate
nodes that correspond to the input/output ports. The number of timeslots that
are located at the next stage of the buffer and may be accessed by a timeslot
located at the current stage equals the number of available wavelengths w
divided by the number of ports k. The virtual switch that connects timeslots
between successive stages is formed so that all input timeslots may access all
output timeslots.

of Fig. 7. All transitions between the input and output space
nodes of a delay stage are valid within a timeslot, since all
stage outputs may be accessed by any stage input in Fig. 6(b).
Time transitions are limited to nodes located at following rows,
following the discussion of Section II-A.

For the rest of this section, we only consider time tran-
sitions and timeslot nodes that form the Benes subgraph
on the space–time graph to simplify the illustration of our
analysis. However, the time transitions between input and
output timeslot nodes include all k possible space transitions
between the corresponding input and output space nodes. This
approach results in constructing the Benes interconnection
network on the time transitions of the space–time graph and,

Fig. 8. (a), (b) Formation of the logd–Benes subgraph on the time transitions
of the space–time graph. The dxd virtual switches at stage i are formed out of
nodes that lie di timeslots apart. (c) Expanded interconnection network.

afterward, expanding the crossbars and connections of the
resulting network by a factor of k. Within this context, our
goal is to engineer a logd–Benes interconnection network on
the time transitions of the space–time graph that corresponds
to the shared-buffer architecture. The procedure is illustrated in
Figs. 7 and 8. We first determine the size d of the elementary
crossbars that comprise the Benes graph, and then, we define
the delays that are required to form the logd–Benes graph on
the space–time graph. The crossbar size is determined after
calculating the number wa of timeslots that are fully accessed
at the output of the stage 0 on the space–time graph. This is
equal to the wavelength tunability w normalized by the number
of ports k

wa =
⌊w

k

⌋
. (17)

The size of the crossbars is calculated after combining
(2) and (17)

d =
⌊

wa + 1
2

⌋
=

⌊⌊
w
k

⌋
+ 1

2

⌋
. (18)

The logd–Benes graph is formed as in Fig. 8(a) and (b) by
setting the delays equal to

D(i, j) = j · di, i = 0, . . . ,m − 1, j = 0, . . . , wa − 1.
(19)

YIANNOPOULOS et al.: MULTIPLE-INPUT-BUFFER AND SHARED-BUFFER ARCHITECTURE FOR OPS/OBS NETWORK 1385

Fig. 9. Scheduling algorithm for the shared-buffer architecture.

Similar to the multiple-input-buffer design, only d time tran-
sitions are utilized per timeslot, and as a result, the bursts
experience a minimum storage latency equal to

∆ =
m−1∑
i=0

di · (d − 1) +
m−2∑
i=0

di · (d − 1)

= dm + dm−1 − 2

= T +
T

d
− 2 (20)

timeslots.
The fully expanded network that includes space transitions

is detailed in Fig. 8(c) after taking into consideration that each
time transition includes k space transitions and that the crossbar
size is n = k · d nodes in total. The fully expanded network
is rearrangably nonblocking, and thus, buffering without in-
ternal collisions can be achieved. Moreover, the number of
delay stages that are required to implement the shared-buffer
architecture is given by (see Fig. 8)

s = 2 · m − 1 = 2 · �logd T � − 1. (21)

Equation (21) shows that the shared-buffer design is not optimal
as compared to the multiple-input-buffer design, and this is
because we have constructed a logd–Benes graph on the time
transitions instead of logn–Benes graphs on both time and
space transitions. As a result, the scalability of the shared
buffer with respect to the timeframe T is suboptimal. Moreover,
the shared-buffer design does not scale with the number of
input/output ports, and additional ports may only be accom-
modated if redundant wavelengths are provisioned. However,
the drawbacks of the shared-buffer architecture are balanced by
the fact that it requires less-strict-traffic conditions to achieve
lossless operation, as we will show in the following section.

B. Asynchronous Operation in a Lossless OPS/OBS Node

The shared-buffering architecture may be deployed as-is in
an OPS/OBS node, since buffering and switching are performed
independently. Moreover, the rearrangable nonblocking prop-

erty of the expanded interconnection graph of Fig. 8(c) ensures
that no packet/burst collisions take place inside the shared
buffer, provided that the total traffic that arrives at all buffer
inputs and heads for a specific buffer output does not exceed T
timeslots within a timeframe. This is a looser traffic condition
than (6), since incoming traffic does not have to be equally
distributed among all buffer inputs.

Packets/bursts that arrive within the same timeframe are
placed on a common outgoing frame, which starts after ∆
timeslots following the end the incoming frame. In the shared-
buffer architecture, output timeslots are occupied by incoming
packets/bursts according to a modification of the packing rule
that is detailed in the study in [13]. The modified packing rule
is illustrated in Fig. 9. Packets/bursts that head for a common
outgoing link and, thus, the respective timeslots they occupy,
are logically grouped together, and the timeslots that belong to
the same group are given ranks. A rank of a timeslot equals
rq, if it is the rth timeslot that has arrived at incoming link p
and heads for outgoing link q. A timeslot at the incoming time-
frame with rank rq will be mapped at the output timeframe to
timeslot

yq =
p−1∑
l=1

nl,q + rq − 1, y ∈ {0, . . . , T − 1} (22)

where nl,q is the total duration of packets/bursts (in timeslots)
between incoming link l and outgoing link q.

The modified packing rule determines the storage time of
each packet/burst inside the buffer. Moreover, each packet/burst
requests that it be switched to an outgoing node link. Follow-
ing the discussion of Section III-A, both storing and switch-
ing of packets/bursts are implemented by properly assigning
wavelengths inside the programmable-delay stages. From a
space–time graph perspective, storing and switching form the
input/output permutation patterns of the Benes network, while
wavelength assignment is equivalent to setting the state of the
network crossbars. To this end, we developed a parallel-Benes-
routing algorithm suitable for the expanded logd–Benes graph
of Fig. 8. An indicative example of the algorithm is detailed in
the following section.

1386 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

Fig. 10. Routing in the expanded logd–Benes graph.

C. Benes Routing for the logd–Benes Network

An example for routing in the logd–Benes graph is detailed
in Fig. 10 for n = 4 (k = 2, d = 2) and T = 4. The input and
output permutation vectors are given by

πin =(00 01 02 03 10 11 12 13)
πout =(00 01 03 11 02 10 12 13). (23)

The permutation vectors at the output of stage 0 and the input
of stage s−1 are calculated as

π0 = (0a0 0a1 0a2 0a3 1a4 1a5 1a6 1a7)
π2 = (0b0 0b1 0b3 1b5 0b2 1b4 1b6 1b7). (24)

Equation (24) is solved for ai and bi using the symmetry
properties of the expanded logn–Benes graph, after taking into
account (11). The solution is facilitated, however, by the fact
that crossbars are connected with groups of k-parallel lines in
the expanded network. As a result, ai (and bi) that correspond
to the same k parallel-line group may be interchanged, since
they originate from and head for the same crossbar. Thus

am·n+i ↔ am·n+j , i = j, i, j ∈ {0, 1, . . . , k − 1}.
(25)

A solution for the outermost stages in our example is

π0 =(00 01 02 03 13 12 11 10)
π2 =(00 01 02 13 03 12 11 10). (26)

We then omit the outermost crossbars and divide the resulting
graph into two (d in general) subgraphs. The permutation
vectors for the subgraphs are formed after grouping together
the vector elements that correspond to the same crossbar. This
is equivalent to grouping vector elements which have the least
significant symbols z that satisfy

z ∈ [i · k, (i + 1) · k − 1] , 0 ≤ i < d. (27)

In the example of Fig. 10, we find that

π0
in = (00 01 11 10)→π0

out = (00 01 11 10)
π1

in = (02 03 13 12)→π1
out = (02 13 03 12). (28)

Equation (28) is readily solved after renumbering the vector
elements with respect to the column they occupy

π0
in = (0 1 3 2) → π0

out = (0 1 3 2)
π1

in = (0 1 3 2) → π1
out = (0 3 1 2). (29)

Equations (26) and (29) suffice to calculate the permutation
vectors ρin

l and ρout
l at all network stages and define the cross-

bars’ state. The respective wavelengths are assigned according
to (16).

IV. SEMICONDUCTOR-OPTICAL-AMPLIFIER-BASED

MACH–ZEHNDER INTERFEROMETER

(SOA-MZI)-BASED IMPLEMENTATION

In the current section, we discuss the realization of the
proposed buffer architectures with SOA-MZI TWCs. The prime
target is to investigate the BER degradation that is imposed by
each SOA-MZI TWC stage, with a goal to determine the maxi-
mum number of stages s that may be cascaded. Even though
SOA-MZI TWCs are not format transparent, like the four-
wave-mixing-based TWCs [16], they are well-suited candidates
for the proposed multistage designs, since they require low
switching energies and provide high output powers. Therefore,
it is possible to directly cascade delay stages without deploying
inline booster amplifiers that aggravate the OSNR and limit the
TWCs cacadability.

We have used a common simulation setup for both buffers
architectures, as shown in Fig. 11, since both architectures
involve the cascaded operation of programmable-delay stages.
The fiber delay lines were not taken into account during the
simulations, since their lengths are application specific and are
determined by the available wavelengths and the time-frame
size, according to (3) and (19). Moreover, the delay line losses
are negligible in comparison with the Mux/Demux losses for
most practical cases.

The cascadability of SOA-MZI TWCs has been investigated
at 10 and 40 Gb/s using the VPI Transmission Maker simulation
software. The simulation parameters are summarized in Table I,
and the simulation setup is shown in Fig. 11 for both rates. A
symmetric MZI topology has been considered for all TWCs,
with two identical SOAs residing at the MZI arms. The SOAs
of the setup have been modeled using the built-in VPI TLLM
model [17] with parameters that have been experimentally ver-
ified [18]. The SOA-generated amplified spontaneous emission
has also been taken into account in the TLLM parameters.
A 3-dB optical coupler at the input of the MZIs splits the
incoming signal into two components that induce gain and
phase changes in the respective SOAs. The SOA gain and phase
changes are imparted on two replicas of a continuous-wave
(CW) signal that operates at a wavelength. The CW signal
replicas interfere in a 3-dB coupler at the output of the MZI,
and the MZI switch state is set to ON or OFF, depending on
the whether the CW signal replicas have experienced different
gains and phases or not. Differential operation of the switch is
accomplished by introducing attenuation and temporal delay in
the lower MZI arm input-signal component. Under this scheme,

YIANNOPOULOS et al.: MULTIPLE-INPUT-BUFFER AND SHARED-BUFFER ARCHITECTURE FOR OPS/OBS NETWORK 1387

Fig. 11. (Top) Simulation setup of the SOA-MZI TWC. Att: Optical Attenuator. ODL: Optical Delay Line. CW: Continuous Wave. (Bottom) Simulated BER
versus receiver power for the cascaded SOA-MZI wavelength converters operating at (a) 10 and (b) 40 Gb/s. The eye diagrams of the signals at the input of the
buffer and at buffer stages 1 and 7 are shown as insets.

TABLE I
SIMULATION PARAMETERS

the upper arm component switches the MZI ON, and the lower
arm component switches the MZI OFF [19]. A copropagating
input/CW configuration with ideal additional combiners and
splitters has been considered for the MZIs to avoid the excessive
gain overshooting and slow recovery in the SOAs [20]. Inline
optical attenuators of constant attenuation are deployed at the
output of the TWCs so that all stages exhibit unity gain, and
the limited input dynamic range of the MZI TWCs does not
affect the setup performance. In an actual implementation, the
inline optical attenuators would account for the losses of
the multiplexers, demultiplexers, and delay lines that construct
the programmable delay stages of both buffer designs. The
attenuators are replaced by optical amplifiers when the buffer
stages exhibit excessive loss, using the integrated TWC topol-
ogy that has been demonstrated in the study in [21].

The simulation setup has been tested with a 231 − 1 pseudo-
random bit sequence encoded on Gaussian optical pulses. The
input signal was corrupted by additive white Gaussian noise
before entering the first stage of the setup. The simulation
results are presented in Fig. 11(a) and (b) for line rates of
10 and 40 Gb/s, respectively. Fig. 11(a) illustrates the BER

performance versus the received power for up to seven cascaded
TWCs. A negative power penalty of up to 2 dB has been
observed for all stages due to the regenerative properties of the
MZI TWC [22]. Higher received powers are required to achieve
error-free operation of the simulated setup, as compared to
previously reported experimental results, owing to the high
level of the input noise spectral density. The corresponding eye
diagrams reveal that signal quality degrades with the number
of cascaded stages, since amplitude variations in the incoming
pulse train result in timing variations at the output of the
TWC, thus causing accumulation of timing jitter. The same
number of stages has also been achieved at 40 Gb/s at the
expense of a 1.5-dB power penalty, as shown in Fig. 11(b).
Still, the signal quality is worse, as compared with that of
the 10-Gb/s operation, and it can be verified from the eye
diagrams at 40 Gb/s. Signal quality is degraded due to timing
jitter that is accumulated with the number of stages and the
patterning effect that is introduced by the limited gain-recovery
time of the SOA. Despite the fact that the SOAs are driven at
higher currents to provide for a faster gain-recovery time, the
large pulsewidth of the 40-Gb/s signals does not allow for a
larger gain-recovery time span. Shorter pulsewidths, however,
would require a smaller delay between the signal components
that enter the MZI; thus, the TWCs would exhibit loss, and
amplification would be necessary between stages. The signal-
degradation effects of wavelength crosstalk between the CW
and input signals have not been taken into account, since
very low crosstalk values have been demonstrated in similar
SOA-MZI setups [20]. Moreover, the extinction ratio of the
SOA-MZI has been considered ideal [23]. We believe that both
assumptions are valid, since our buffer designs require only a
limited number of cascaded stages.

Following the analysis of the simulation results, we may
conclude that the maximum number of delay stages for the
aforementioned buffer designs that yield an efficient BER of

1388 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

less than 10−9 is seven. For more stages, the simulations
revealed that the accumulated timing jitter and pattern effect de-
grade error performance to less than 10−7. Still, seven stages are
well capable of providing storage times of practical use when
accompanied by broad wavelength-tuning range w, according
to (1) and (21). For instance, for five available wavelengths,
the seven-stage multiple-input buffer is capable of storing 81
packets, with sufficient buffering capability (according to [11]).
Equal storage time may be achieved for a two-port shared-
buffer architecture, at the expense of 11 wavelengths. The
tuning range of the SOA-MZI TWCs is determined by the
channel spacing and the spectral width of the SOA gain peak,
which is typically about 25 nm. Wide TWCs operating at
40 Gb/s have been recently demonstrated [21].

The simulation results of the current section have been
recently utilized toward the experimental demonstration of a
10-Gb/s multiple-input buffer [24]. The experimental demon-
stration of the proposed buffer architecture has been performed
for three wavelengths (w = 3) and three stages (s = 3), and the
buffer has achieved error-free buffering of four optical packets
at 10 Gb/s.

V. CONCLUSION

We have presented the architectural design of two optical
burst buffers using wavelength converters and fixed-length
delay lines that are combined to form either a multiple-input
buffer or a shared buffer. Both schemes are modular, allow-
ing the expansion of the buffer at a cost that grows loga-
rithmically with the buffer size, where the cost is measured
in terms of the number of switching elements (wavelength
converters) required, while wavelength parallelism is used to
significantly reduce the number of delay stages. Furthermore,
we have also proposed architecture-suited algorithms for pro-
viding contention resolution within the buffering time, as well
as algorithms for scheduling the internal wavelengths, again
for contention resolution. The architectural study was comple-
mented with physical-layer simulation of cascaded wavelength
converters at 10 and 40 Gb/s to investigate the efficient error
performance of the proposed buffer designs. It was found that
error-free operation at power penalties below 0 and 1.5 dB,
respectively, can be achieved for up to seven cascaded wave-
length converters.

REFERENCES

[1] D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet
switches,” J. Lightw. Technol., vol. 16, no. 12, pp. 2081–2094, Dec. 1998.

[2] I. Chlamtac et al., “CORD: Contention resolution by delay lines,” IEEE
J. Sel. Areas Commun., vol. 14, no. 5, pp. 1014–1029, Jun. 1996.

[3] C. Guillemot et al., “Transparent optical packet switching: The European
ACTS KEOPS project approach,” J. Lightw. Technol., vol. 16, no. 12,
pp. 2117–2134, Dec. 1998.

[4] R. L. Cruz and J.-T. Tsai, “COD: Alternative architectures for high-speed
packet switching,” IEEE/ACM Trans. Netw., vol. 4, no. 1, pp. 11–21,
Feb. 1996.

[5] S. Bjørnstad, N. Stol, and D. R. Hjelme, “An optical packet switch design
with shared electronic buffering and low bit rate add/drop inputs,” in Proc.
Int. Conf. Transparent Opt. Netw., 2002, pp. 69–72.

[6] R. V. Caenegem et al., “From IP over WDM to all-optical packet switch-
ing: Economical view,” J. Lightw. Technol., vol. 24, no. 4, pp. 1638–1645,
Apr. 2006.

[7] E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for
optical packet buffering,” IEEE Photon. Technol. Lett., vol. 18, no. 1,
pp. 103–105, Jan. 2006.

[8] R. S. Tucker, “The role of optics and electronics in high-capacity routers,”
J. Lightw. Technol., vol. 24, no. 12, pp. 4655–4673, Dec. 2006.

[9] M. C. Chia et al., “Packet loss and delay performance of feedback and
feed-forward arrayed-waveguide gratings-based optical packet switches
with WDM inputs-outputs,” J. Lightw. Technol., vol. 19, no. 9, pp. 1241–
1254, Sep. 2001.

[10] C. M. Gauger, “Dimensioning of FDL buffers for optical burst switching
nodes,” in Proc. 6th IFIP Work. Conf. ONDM, Torino, Italy, Feb. 2002,
pp. 117–132.

[11] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden, “Routers with very small buffers,” in Proc. IEEE
INFOCOM, 2006, pp. 1–11.

[12] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and
I. Andonovic, “SLOB: A switch with large optical buffers for packet
switching,” J. Lightw. Technol., vol. 16, no. 10, pp. 1725–1736, Oct. 1998.

[13] E. A. Varvarigos, “The ‘packing’ and the ‘scheduling’ packet switch
architectures for almost all-optical lossless networks,” J. Lightw. Technol.,
vol. 16, no. 10, pp. 1757–1767, Oct. 1998.

[14] D. K. Hunter and D. G. Smith, “New architectures for optical TDM
switching,” J. Lightw. Technol., vol. 11, no. 3, pp. 495–511, Mar. 1993.

[15] T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Benes–Clos
networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847,
Nov. 2002.

[16] N. Chi and S. Yu, “Optical subcarrier labeling transparent to the payload
format using carrier suppression technique,” IEEE Photon. Technol. Lett.,
vol. 18, no. 8, pp. 971–973, Apr. 15, 2006.

[17] VPI ComponentMaker, Active Photonics User’s Manual. Ch. 5: Overview
of the TLLM.

[18] E. Kehayas et al., “ARTEMIS: 40-Gb/s all-optical self-routing node and
network architecture employing asynchronous bit and packet-level optical
signal processing,” J. Lightw. Technol., vol. 24, no. 8, pp. 2967–2977,
Aug. 2006.

[19] K. Tajima, “All-optical switch with switch-off time unrestricted by car-
rier lifetime,” Jpn. J. Appl. Phys., vol. 32, no. 12A, pp. L1746–L1749,
Dec. 1, 1993.

[20] J. Leuthold et al., “All-optical Mach–Zehnder interferometer wavelength
converters and switches with integrated data- and control-signal sep-
aration scheme,” J. Lightw. Technol., vol. 17, no. 6, pp. 1056–1066,
Jun. 1999.

[21] V. Lal et al., “Performance optimization of an InP-based widely tunable
all-optical wavelength converter operating at 40 Gb/s,” IEEE Photon.
Technol. Lett., vol. 18, no. 4, pp. 577–579, Feb. 15, 2006.

[22] J. Mork, F. Ohman, and S. Bischoff, “Analytical expression for the bit
error rate of cascaded all-optical regenerators,” IEEE Photon. Technol.
Lett., vol. 15, no. 10, pp. 1479–1481, Oct. 2003.

[23] J. Leuthold et al., “All-optical space switches with gain and principally
ideal extinction ratios,” IEEE J. Quantum Electron., vol. 34, no. 4,
pp. 622–633, Apr. 1998.

[24] O. Zouraraki et al., “Optical packet buffering in all-optical time-slot-
interchanger architecture,” IEEE Photon. Technol. Lett. submitted for
publication.

Konstantinos Yiannopoulos was born in Tripoli, Arcadia, Greece, in
December 1977. He received the Ph.D. and Diploma degrees in electrical
and computer engineering from the National Technical University of Athens,
Athens, Greece, in 2004 and 2000, respectively.

From 1999 to 2004, he was with the Photonics Communications Research
Laboratory, National Technical University of Athens. He is currently a Post
Doctoral Researcher with the Computer Engineering and Informatics De-
partment, University of Patras, Rio, Greece. His research related experience
includes high-speed all-optical logic, optical-signal processing for packet- and
burst-switched networks, and high-rate optical sources. He is the Author or
Coauthor of more than ten papers in IEEE journals and sponsored conferences.

Dr. Yiannopoulos is a member of the IEEE Lasers and Electro-Optics Society
(LEOS) and the IEEE Communications Society. He was one of the recipients
of the IEEE LEOS Graduate Student Fellowship Award in 2004.

YIANNOPOULOS et al.: MULTIPLE-INPUT-BUFFER AND SHARED-BUFFER ARCHITECTURE FOR OPS/OBS NETWORK 1389

Kyriakos G. Vlachos (S’00–M’02) received the Dipl.-Ing. degree in electrical
and computer engineering and the Ph.D. degree in electrical and computer
engineering from the National Technical University of Athens (NTUA), Athens,
Greece, in 1998 and 2001, respectively.

From 1997 to 2001, he was a Senior Research Associate with the Photonics
Communications Research Laboratory (ICCS/NTUA). In April 2001, he was
with Bell Laboratories, Lucent Technologies, working on behalf of the Applied
Photonics Group. Since 2005, he has been a Faculty Member with the Computer
Engineering and Informatics Department, University of Patras, Rio, Greece.
His research interests are in the areas of high-speed protocols and technologies
for broadband high-speed networks, optical packet/burst switching, and grid
networks. He has participated in various research projects funded by the
European Commission (IST-STOLAS, IST-PRO3, ESPRIT-DOALL, e-photon/
ONe+, and IST-PHOSPHOROUS). He is the (Co)Author of more than
70 journal and conference publications and is the holder of five patents.

Prof. Vlachos is a member of the Technical Chamber of Greece.

Emmanouel Varvarigos was born in Athens, Greece, in 1965. He received the
Diploma in electrical and computer engineering from the National Technical
University of Athens in 1988 and the M.S. and Ph.D. degrees in electrical engi-
neering and computer science from the Massachusetts Institute of Technology,
Cambridge, in 1990 and 1992, respectively.

He has held faculty positions at the University of California, Santa Barbara,
from 1992 to 1998, as an Assistant Professor and, later, an Associate Professor,
and Delft University of Technology, Delft, The Netherlands, from 1998 to
2000, as an Associate Professor. In 2000, he became a Professor with the
Department of Computer Engineering and Informatics, University of Patras,
Rio, Greece, where he is currently heading the Communication Networks Lab-
oratory. He is also the Director of the Network Technologies Sector, Research
Academic Computer Technology Institute, which, through its involvement
in pioneering research and development projects, has a major role in the
development of network technologies and telematic services in Greece.

