
A new window-based burst assembly scheme for
TCP traffic over OBS
Kostas Ramantas1, Kyriakos Vlachos1,

Óscar González de Dios2 and Carla Raffaelli3

1 Computer Engineering and Informatics Dept. & Research Academic Computer Technology Institute,

University of Patras, GR26500, Rio, Greece
2Telefónica I+D, Emilio Vargas 6, Madrid, Spain

3Dep. of Electronics, Computer Science and Systems, University of Bologna, Italy
*Corresponding author: kvlachos@ceid.upatras.gr

Abstract: In this paper, the impact of burstification delay on the TCP
traffic statistics is presented as well as a new assembly scheme that uses
flow window size as the threshold criterion. It is shown that short assembly
times are ideally suitable for sources with small congestion windows,
allowing for a speed up in their transmission. In addition, large assembly
times do not yield any throughput gain, despite the large number of
segments per burst transmitted, but result in a low throughput variation, and
thus a higher notion of fairness among the individual flows. To this end, in
this paper, we propose a new burst assembly scheme that dynamically
assigns flows to different assembly queues with different assembly timers,
based on their instant window size. Results show that the proposed scheme
with different timers provides a higher average throughput together with a
smaller variance which is a good compromise for bandwidth dimensioning.

©2008 Optical Society of America
OCIS codes: (060.0060) Fiber optics and optical communications, (060.1155) All-optical
networks, (060.4510) Optical communications .

References and links
1. C. Qiao and M. Yoo, “Optical burst switching (OBS)-A new paradigm for an optical internet” J. High Speed

Networks, vol. 8, no. 1, pp. 69–84, 1999.
2. A. Ge, F. Callegati and L.S. Tamil, “On optical burst switching and self-similar traffic”, IEEE Communication

Letters, vol 4, no. 3, pp. 98-100, 2000.
3. M. Düser and P. Bayvel, “Analysis of a dynamically wavelength-routed optical burst switched network

architecture,” IEEE/OSA J. Lightwave Technol., vol. 20, pp. 574–585, Apr. 2002.
4. V.M. Vokkarane, K. Haridoss, J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical

burst-switched networks”, in Proc. of Optical Networking and Communication Conference (OptiComm), pp.
125-136, 2002.

5. X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched
networks”, in Proc. of Optical Networking and Communication Conference (OptiComm), pp. 149–159, 2002.

6. X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP packets in optical burst switched networks” in Proc.
of IEEE GLOBECOM, vol. 3, pp. 2808–2812, 2002.

7. M. Casoni and M. Merani, “On the Performance of TCP over Optical Burst Switched Networks with Different
QoS Classes”, Lecture Notes in Computer Science, Volume 3375/2005, pp. 574-585, 2005.

8. S. Malik and U. Killat, “Impact of burst aggregation time on performance in optical burst switching networks”,
Elsevier J. of Optical Switching and Networking, vol. 2, no. 4, pp. 230-238, 2005.

9. A. Detti and M. Listanti, "Impact of segments aggregation on TCP Reno flows in optical burst switching
networks", in Proc. of IEEE INFOCOM, vol. 3, pp. 1803 – 1812, 2002.

10. M. Izal and J. Aracil, "On the Influence of Self-similarity on Optical Burst Switching Traffic", in Proc. of IEEE
GLOBECOM, vol. 3, pp. 2308 – 2312, 2002.

11. X. Yu, J. Li, X. Cao, Y. Chen and C. Qiao; “Traffic statistics and performance evaluation in optical burst
switched networks”, IEEE/OSA Journal of Lightwave Technology, vol. 22, no. 12, pp. 2722 – 2738, Dec. 2004.

12. X. Yu, C. Qiao and Y. Liu, “TCP implementations and false time out detection in OBS networks”, in
proceeding of INFOCOM 2004, vol. 2, pp. 774 – 784, 2004.

13. C. Cameron, H. Le Vu, J. Choi, S. Bilgrami, M. Zukerman, and M. Kang, “TCP over OBS - fixed-point load
and loss”, Optics Express, vol. 13, no. 23, pp. 9167-9174, 2005.

1. Introduction

Optical burst switching (OBS) [1] has been introduced to combine both strengths of packet
and circuit switching and is the most promising technology for next generation optical
Internet. An OBS network consists of a set of optical core routers, with edge routers at its
edges that are responsible for the burst assembly/disassembly function. In OBS networks, an
optical burst is constructed at the network edge, from an integer number of variable size
packets. Two distinct burst assembly algorithms have been proposed in the literature: the
timer-based and the threshold-based. In the timer-based method, also denoted as TMAX in the
literature, [2,3] a time counter starts any time a packet arrives and, when the timer reaches a
time threshold (TMAX), a burst is created; the timer is then reset to 0 and it remains so until the
next packet arrives at the queue. Hence, the ingress router periodically generates bursts every
TMAX time, independently of the yielding burst size. In the second scheme, [4], a threshold is
used to determine the end of the assembly process. In most cases the threshold used is the
burst length, denoted in the literature as BMAX. In that case, bursts are thought as containers of
a fixed size BMAX, and as soon as the container is completely filled with data, the burst is
transmitted. The timer-based method limits the delay of packets to a maximum value TMAX but
it may generate undesirable burst length; the burst-length based method generates bursts of
equal size, but it may result in long delays when the traffic load is light. To address the
deficiency associated with these assembly algorithms, hybrid (mixed time/threshold based)
assembly algorithms were proposed [5], where bursts are created when either the time limit or
the burst-size limit is reached, whichever happens first. Apart from the aforementioned
assembly schemes, other more complex schemes have been also proposed, which are usually a
combination of the timer -based, and the threshold-based methods [6].

Performance of TCP over OBS networks has been studied in previous works [7-9] where it
has been observed that the burst losses have significant impact on the TCP end-to-end
performance. In particular, TCP transmission over OBS networks suffers from the high
number of segments which are lost upon a single burst drop. This typically results in many
sources timing out and entering a slow start phase that will significantly delay their transfers.
The assembly process also affects their end-to-end performance, by introducing an
unpredictable delay, [10], that challenges the window mechanism used by TCP protocol for
congestion control. Short assembly times yield a higher throughput to TCP sources primarily
because they reduce the total end-to-end delay associated with the round trip-time delay.
However, short assembly times prohibit the fast increase of the congestion window since
sources are allowed to transmit only a few segments per burst. Long assembly times, are more
efficient especially for fast TCP flows [11], since they allow the transmission of multiple
segments per burst. However, this throughput gain may be compensated by the large
burstification delay. Useful insights on TCP traffic statistics is given in [11,12], while in [13]
the estimated burst loss probability is combined with the TCP sending rate, used as the input
load over a single link in the network.

In this paper, we present a TCP traffic analysis for different burstification delays. We first
analyze how segments and flows are distributed over the assembled bursts for various
assembly timers and further analyze their effect in the number of transmitted and lost bursts
per flow. Further, window behaviour and its impact on average and variance of the yielding

throughput is investigated. We argue in this paper that the characterization of a flow as slow,
medium or fast depends on its instant window size and we show that a dynamic multi-queue
assembly scheme with different timers, provides a higher average throughput together with a
smaller variance.

The rest of the paper is organized as follows. Section 2 presents an overview of the different
TCP variants, while Section 3 a detailed TCP over OBS traffic analysis. Section 4 discusses
the effect of burstification delay in the congestion window evolution and the yielding
throughput, while finally Section 5 presents the performance of a new assembly scheme based
on the flow’s congestion window size.

2. Transport Control Protocol variants

There are a number of TCP flavours such as Tahoe, Vegas, Reno, New Reno and SACK,
combined with a number of different burst assembly strategies. The last three protocols are the
most interesting. The main differences among them are the algorithms that they employ when
congestion is detected. TCP Reno refers to TCP with Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery algorithms. When Reno starts, it enters the Slow Start phase
first with a congestion window of one segment size and then exponentially increase it, upon
the acknowledgement of all the packets transmitted. When the window reaches a certain
threshold of w, it enters, the Congestion Avoidance phase, according to which the windows is
now increasing only by one segment after all segments have been acknowledged.

In TCP Reno, two different methods are applied to identify losses; the Time Out (TO) and
Triple Duplicate (TD) loss. In the Triple Duplicate (TD) case, the sender receives three
duplicates ACKs that acknowledge the last segment before the first lost one. In that case TCP
Reno enters the Fast Retransmit phase, and start transmitting the lost segments. For every
successful transmission of these segments, the sender halves its congestion window and
receives a TD ACK message for the next lost segment in the burst. In Reno, the maximum
number of recoverable segment losses in a congestion window without timeout is limited to
one or two segments in most cases. In the case of a Time Out (TO) loss case, no ACK is
received in a certain time period, denoted by the expiration of a timer. In that case TCP Reno
enters the Slow Start phase, and reduces its window back to one segment size. New TCP Reno
is a slight modification according to which the sender retransmits one lost segment per round-
trip-time upon receiving a partial ACK message, without waiting for a TD ACK and without
halving its window until all lost segments are successfully acknowledged. On the other hand,
SACK (Selective Acknowledgment) TCP implements a different ACK message, which carries
the non-contiguous set of received packet sequence numbers. To this end, the sender is aware
of the lost packets and which are transmitted altogether. In that case the congestion window is
halved, before linearly increasing again. Detailed SACK performance in OBS networks is
clearly superior, as shown in [11], since all the segments that were employed in a burst that
was dropped can be identified and subsequently retransmitted at the same round.

TCP performance (e.g., throughput) heavily depends on burst assembly time due to the
extra delay enforced (denoted as burstification delay). Therefore TCP mechanism adjusts its
window mechanism upon a burst transmission or reception and thus timer-based assembly
schemes may perform better than size-based algorithms. For the timer (TMAX) threshold there
could exist an optimal value that maximizes throughput performance in a TCP over OBS
network [11]. In [4], it has been shown that optimal performance can also be achieved with an
optimal burst length algorithm, while in [6], it is shown that a dynamic assembly algorithm
that adjusts the threshold values (e.g., time, burst-length or both) according to traffic statistics
can achieve an even better performance.

3. Burstification effect on segment and flow distribution

In this section, a thorough analysis of TCP traffic is presented when OBS is used as the
underlying transport technology. Although TCP-SACK implementation and timer-based
assembly schemes are the most promising, very few previous works providing an in-depth
analysis of how segments, flows and their parameters vary when aggregation time is varied.
We have developed a dedicated TCP-SACK over OBS simulator using ns-2 simulator and
made modifications in the raw code to efficient manipulate TCP sources and available CPU
resources, thus being capable of simulating hundreds of active sources. The experiments were
carried out on the NSF network topology, with 8 edge and 6 core nodes whereas each link was
employing a single wavelength at 10Gbps. It is assumed that edge nodes have sufficient
resources to store bursts and losses occur only in the core. Access rate was set to 100Mbps.
TCP arrivals were modeled with a Poisson arrival process with a λ=50 flows/sec rate and an
exponential inter-arrival time of 1/μ=10msec, while TCP file size was modeled with a Pareto
distribution process of p load and a min ON size of 40KByte. Using this set of metrics, it was
possible to vary the TCP arrival rate and/or the mean file size, to obtain measurements for a
different number of simultaneous active flows. Fig. 1(a) display the number of active flows
versus the average file size selected for three different assembly timers namely for 1, 5 and
10msec, while Fig. 1(b) displays the corresponding burst loss ratio. Results shown hereinafter
correspond to the steady state (constant number of active sources) of the experiments after
20sec of execution time.

0

200

400

600

800

1000

1200

1400

1600

200 700 1200

O
N
 T
CP

 s
ou

rc
es

Average TCP filesize

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

0,005

0,01

0,015

0,02

0,025

0,03

250 450 650 850 1050

B
ur
st
 lo
ss
 ra
ti
o

Avg TCP file size (KB)

Tmax =10ms
Tmax =5ms
Tmax =1ms

Fig. 1. (a) Number of simultaneous active TCP sources at each edge node

versus average file size and (b) the corresponding burst loss ratio.

From Fig. 1(a), it can be seen that the number of active sources in the case of 5 and 10msec
timers is similar, while in the case of 1msec, it is 200 more for all flow sizes above 600KB. It
must be noted here that the number of active sources measured is a dynamic parameter of the
simulating experiment that can vary when additional burst losses occur and thus this
parameter corresponds to a real, instant figure of the network under study. An important issue
noticed is that more than 30% of the active sources were in a slow start phase, while the
simulating scenario was entering the steady state much earlier in the case of 5 and 10msec,
than in the case of 1msec timer. In what follows, we have selected a mean file size of 700KB,
which correspond to 600 and 800 active sources respectively for 5,10msec and 1msec timers
in the network and a burst loss ratio of 2%. Using these as reference, we have measured two
basic statistics; the distribution of segments and the distribution of TCP flows over the
assembled bursts for various assembly times.

Fig. 2 displays (a) the probability distribution function of the number of segments and (b)
the cumulative distribution function of the number of different TCP flows per transmitted
burst. The results shown correspond to all the bursts transmitted in the network, for all source-
destination pairs. Fig. 2 provides a useful insight of how many TCP sources will experience a

(a) (b)

segment loss from a single burst loss as well as how many segments will be lost. The exact
number of lost segments per source is the combined probability of Fig. 1(b), Fig. 2(a) and Fig.
2(b). From Fig. 2(b) and in the case of 1msec assembly time, it can be seen, that 80% of the
transmitted bursts employ segments from only 2 different sources, while for 5 and 10msec
timers, this increases to 4 and 6 segments respectively. It is clear that large aggregation times
contribute in the transfer of a higher number of sources and segments per burst that in turns
may lead to smaller completion times, fewer bursts generated but with the trade off that more
sources will be potentially affected upon a burst loss. However, at which point the network
will balance is still unknown but is reflected in the number of active sources, shown in Fig. 1,
and segment and flow distribution.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 25 50 75 100 125 150

%
 fl
ow

s
(p
df
)

flows segments per burst

T=1msec
T=5msec
T=10msec

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15

%
bu

rs
ts
 (c
df
)

TCP flows per burst

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 2. (a) Segment and (b) flow distribution per burst transmitted

for 1, 5 and 10msec, assembly timers

The probability distribution of segments per burst (Fig. 2a) exhibits sharp increases at the end
of the corresponding curves. These sharp increases are due to the finite access rate in
combination with the specific burstification time. For example, for 1msec assembly time, no
more than 13 segments from the same flow could be added in the same burst, due to the
limited 100Mbps access rate. For 5 and 10msec, the corresponding maximum numbers of
segments were 61 and 121. It is worth noting, that the number of bursts carrying that
maximum number of segments is decreasing with the increase of the assembly time. For
example, in the case of 1msec timer, the number of bursts carrying 13segments from the same
source is 33%, and which decreases to 13% and 7% for 5 and 10msec timers. This can be
attributed to the different window sizes of the active sources. In particular, it was found out
that sources with a large window size were capable of adding more segments in the
transmitted bursts as a result of their larger pool of unacknowledged segments. Thus, when
using short assembly times, a high number of sources had a window size larger than 13
segments, and therefore the high percentage of bursts (~33%). On the other hand, in large
assembly times only a few flows had large enough windows to transmit more segments. For
example, when employing a 10msec timer, only the flows with a window size larger than 121
segments could send that maximum number of segments. To this end, we may conclude that
segment and flow distribution depends on both the burstification delay and the flow window
size and large timers result in the transfer of a higher number of segments per burst but only
for flows that have unacknowledged segments to transmit. Otherwise, they unnecessarily
delay burst transmission, resulting in poor throughputs, especially for flows that are in a slow
start phase.

We have also measured the actual number of bursts (transmitted and lost) per flow, which
are necessary to complete a transfer. Fig. 3(a) and (b) shows the corresponding distribution
functions for a single (randomly selected) source-destination pair, independently of the flow
size. The selection of single source-destination pair allows for the fair evaluation of bursts
transmitted over the same path, with the same round-trip-time delay and blocking ratio. From

(a) (b)

Fig. 3, it is clear that small assembly times result in a significant increase in the number of
bursts needed to complete a transfer, while the lost bursts per flow vary much less. In
particular, in the case of 1msec, 80% of the flows need on average up to 80 bursts to complete
their transfer, while only 40 and 34 are needed in the case of 5 and 10msec respectively. The
difference in the lost bursts is smaller and particularly 5 bursts per flow are lost, when using
an 1msec timer as opposed to 4 bursts in the case of 5 and 10msec. Of course, the number of
bursts needed to a complete a transfer depends heavily on the amount of data to be transferred.
Therefore, in Fig. 4, we have further analyzed the transmitted and lost bursts per flow with
respect to the corresponding flow size.

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200

%
 s
es
si
on

s
(c
df
)

Nunmber of Bursts per session

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20

%
se
ss
io
ns
 (c
df
)

Lost bursts per session

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 3. (a) Distribution of the number of bursts needed to complete a TCP transfer and (b) the number

of lost burst per flow for 1, 5 and 10msec assembly timers. Results shown correspond to a single
source-destination pair.

0

50

100

150

200

250

300

200 700 1200 1700 2200

B
ur
st
s
pe

r
fl
ow

TCP source file size (KB)

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

1

2

3

4

5

6

7

8

200 700 1200 1700 2200

Lo
st
 b
ur
st
s
pe

r T
CP

 fl
ow

TCP sources file size (KB)

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 4. (a) Number of bursts needed to complete a flow transfer and (b) number of lost burst per flow
for 1, 5 and 10msec assembly timers, versus the TCP file size. Results shown correspond to a single

source-destination pair.

From Fig. 4(a), it can be seen that the number of transmitted bursts increases almost linearly
with flow size, while 1msec curve diverge rapidly. In particular, for the maximum flow size of
2MB, 3.5 times more bursts are needed in the case of 1msec, while the number of lost bursts
(see Fig. 4(b)) differs less. This was however expected since the corresponding 80% of the
transmitted bursts were carrying less than 13 segments from only 2 flows at most (see Fig. 2).
It is therefore clear that small assembly times significantly increase network overhead,
constraining the transmission of multiple-segments from multiple flows per burst. This results
to longer file transfer times that in turns lead to more flows remaining active. However, small
aggregation times may result in higher throughputs for individual flows since burstification
delay is by default smaller. On the other hand, large assembly times service more flows at a
time, carrying more segments from each individual flow. However, the burstification delay
that they impose result by default in lower throughputs. To conclude, it is not yet clear if small

(a) (b)

(a) (b)

aggregation times result in a higher throughput or eventually in a worse performance, or if
large assembly times are capable of canceling the large burstification delays imposed. In the
next section, we investigate how throughput varies for an individual flow and how congestion
window evolves for lossless flows.

4. TCP Throughput and Congestion Window analysis

In order to qualitatively investigate the performance of assembly timers, we have measured
the average throughput achieved along with its variance, maximum and minimum value. In
[11], it has been shown that the TCP throughput decreases with the increase of burstification
delay, but this occurs for very large timers. However, measuring average throughputs does not
reveal the real performance of individual flows. To this end, in Fig. 5a, we have measured the
average and the variance of throughput, while in Fig. 5b its maximum and minimum value
versus assembly time for a specific source–destination pair.

 Fig. 5. (a) Average throughput and variance of all flows of a single source-destination pair

and (b) maximum and minimum throughputs measured versus burst aggregation time.

From Fig. 5(a), it can be seen that both average and variance of throughput decreases rapidly
with the increase of assembly time. Throughput variance decreases primarily because large
assembly times smooth out and dilute individual flow performances. This can be derived from
Fig. 5(b) as well, where the maximum throughput decreases but the minimum changes
slightly. To this end, large assembly times yield a lower throughput, with no gain from
multiple segment transmission, but however can provide a higher notion of fairness among the
individual flows in the sense that all flows reach the same throughput value and thus fairly
share network bandwidth.

To further elaborate on this, we have selected three lossless flows with similar characteristics,
like file size, routing path and starting time and measured the evolution of their window. Fig.
6(a) displays in detail the rising edge of their window, while Fig. 6(b) displays the sequence
number (modulo 132) of the segments transmitted for an assembly time of 1msec (left
column), 5msec (middle column) and 10msec (right column). From Fig. 6(a), it can be seen
that the flow window rises faster for 1msec rather than for 5 or 10msec. In particular, in the
case of 1msec, a 600segment window is reached within 0,194sec, while for 5msec and 10msec
in 0,350 and 0,405sec. The highest speed up gain is noticed for a window increase from 1 to
100segments. Above this value, the rate at which all windows expand converge. To this end,
segment transmission takes place faster, and in particular 6 bursts (carrying segments from
these sources) are transmitted within 0,15sec in the case of 1msec assembly time (see counts
of segment sequence number in Fig. 6b), while 5 and 4 in the case of 5 and 10msec.

A significant finding is that the maximum, instant throughput of these flows was found to
bet the same (~65Mbps) independently of the assembly timer. However that maximum was

(a) (b)

obtained much faster in the case of 1msec timer, and thus the higher average throughput. In
particular, average throughput was measured to be 23Mbps against only 17 and 14Mpbs for 5
and 10msec assembly timers. A second important finding is that this maximum throughput
was constant only for the case of 10msec timer. In the rest, and especially for 1msec assembly
timer, it was varying by more than 50%. This instability was due to the fact that short
assembly times cannot sustain a constant segment-to-burst ratio and thus cannot yield a
constant throughput. In contrast, large assembly times can absorb such traffic instabilities due
to the longer burstification delay time and thus the lower variance shown in Fig. 5a.

0

100

200

300

400

500

600

700

800

51,7 51,95 52,2
time

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

100

200

300

400

500

600

700

800

51,4 51,65 51,9

time

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

100

200

300

400

500

600

700

800

57,85 58,1 58,35

Time (sec)

C
on

ge
st

io
n

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

20

40

60

80

100

120

140

51,8 51,9

time

se
qu

en
ce

 m
od

 1
32

0

20

40

60

80

100

120

140

51,45 51,55

time

se
qu

en
ce

 m
od

 1
32

0

20

40

60

80

100

120

140

57,85 57,94

time

se
qu

en
ce

 m
od

 1
32

Time (sec)

Time (sec)

Fig. 6. (a) Congestion window and (b) Sequence number of the transmitted segments under identical timescales and

flow sizes for 1msec (left column), 5msec (middle column) and 10msec (right column) assembly time.

5. Window-based Burst Assembly Scheme

Based on the above analysis, it is clear that fixed timer-based burstifiers are not appropriate,
since they do not provide maximum performance but only optimal performance for individual
flows with similar characteristics (i.e. file size, size of window, blocking, etc.). Further,
measuring averaging throughputs is not indicative of TCP performance, and conceals true
flow behavior in the network. In order to truly enhance TCP performance, the instant window
size is a metric to be considered for determining the optimum assembly time. Further, static
use of fixed timer is not enough and a dynamic process is preferred that assigns flows to
different assembly queues with different assembly timers. In order to evaluate such a scheme,
we have implemented a new assembly scheme with three different queues per source–
destination pair. Each queue had a different assembly timer, and incoming packets were
assigned to these, based on their instant window size as follows:

(a)

(b)

⎪
⎩

⎪
⎨

⎧

>
<<

<
=

CCWifsecm10
CCWBifsecm5

BCWifsecm1

T timeassembly
 Eq. (1)

, where B, C is the flow window size in segments. A flow is characterized as slow when its
instant window size is less than B segments, as medium, when it is less than C segments and
as a fast flow when it is even higher. Thus, all slow TCP flows with a congestion window of
less that B segments are aggregated together under 1msec delay. When their congestion
windows reach the limit of B segments, the flows are upgraded to medium rate flows and their
segments are assembled under a 5msec delay. Similarly, when their congestion windows reach
the C segment limit, these flows are upgraded again to fast flows and their assembly time is
increased to 10msec. In this way, each flow is treated separately and thus upon a burst loss
only the flows experiencing losses will be downgraded to medium flows or even to slow flows
if they eventually time out. The implementation of this assembly scheme requires the
communication of the window size to the burstifier, which is not standard in the current TCP
implementations. In any case, we have implemented such a scheme using ns-2, in order to
investigate its throughput gains and measure the yielding average and variance of the
throughput for various B and C combinations.

Fig. 7. Average and variance of throughput of all flows aggregated at a single node and heading for the same

destination for various combinations of B and C values.

Fig. 7 displays the average throughput versus parameter C, for two different B values; namely
for B=16 and 32segments. It can be seen that the highest gains in throughout are noted when
C parameter is fourfold B value. For example the “B=16” curve exhibits a maximum of
10.7Mbps for “C=64”, while the “B=32” curve (corresponding throughput 9.86Mbps) for
“C=128”. For even higher values of C (>256), the performance of the system resembles the
case of having two only queues. This is because TCP windows do not always reach such a
large size, as a result of burst losses. With respect to the variance of the throughput, it is
continuously decreasing with the increase of C parameter as expected, since overall
performance starts being dominated by the next queue that employs a higher assembly timer.
However it worth noting, that for the particular case of “B=16” and “C=64” that exhibited the
highest throughput, variation has been significantly decreased to only 51, as opposed to 70, in
the case of a single queue burstifier with 5msec time. Thus, we may argue that this B,C
combination merges best the performance advantages of long and short assembly times and
can support an average throughput of 10.3Mbps with a variance as low as 51. It must be noted
here, that overall performance of the assembly scheme is dominated by that queue/timer

having the largest segment range, that is B and |C – B |, for the first and the second queue. For
example, for higher B values (>32), the system performance approximates that of a single
queue with 1msec burstifier, while for B values smaller than 16, the case of a 5msec timer.

The abovementioned B,C, were selected having in mind that a speed up in TCP transmission
in needed when window size is relative small. In general, B,C parameters depend on the
network (i.e. blocking ratio) and the traffic statistics (i.e. flow arrival rate, file size etc) and
can be different for different network setups. In any case, there will always be a set of
parameters that optimizes performance, since the TCP congestion algorithm (window
mechanism) operates independently.

6. Conclusions

In this paper, analysis of TCP traffic over OBS networks was presented for multi-queue
burstifiers based on different timer values. It was found that short assembly times provide a
higher average throughput but result in a significant performance variation of the individual
aggregated flows. On the other hand, large assembly times are capable of smoothing out
performance differences but eventually lead to poor performance. In addition, it was shown
that the yielding instant throughput can be the same, independently of the burstification delay
imposed, leading to the conclusion that measuring average throughput is not indicative for the
individual flows. To this end, we have proposed a new burst assembly scheme, employing
more than one queue per destination with different timers, where flows are dynamically
assigned based on their instant window size. It was found that such a 3-queue burstifier is able
to increase TCP performance in a fair way for all the aggregated flows.

Acknowledgements

The work described in this paper was carried out with the support of the BONE-project
("Building the Future Optical Network in Europe”), a Network of Excellence funded by the
European Commission through the 7th ICT-Framework Programme.

