

Research Academic Computer Technology Institute University of Patras

Analyzing Traffic across the Greek School Network

<u>Costas Kattirtzis</u>, Emmanuel Varvarigos, Kyriakos Vlachos, University of Patras & Research Academic Computer Technology Institute

> George Stathakopoulos and Michael Paraskevas Research Academic Computer Technology Institute

LANMAN 2005, 14th IEEE Workshop on Local and Metropolitan Area Networks, 18-21 September 2005, Chania, Crete, Greece

Communication Networks Laboratory -

Introduction

- Internet is growing dramatically.
- Very complex patterns to model the Network Traffic.
- Studies in LAN and WAN have been made since the early 80s.
- Today's findings lead us to the conclusion that
 - Ethernet traffic is statistically self-similar
 - Poisson assumption is valid in special cases
- Recent studies on Peer-to-Peer traffic mainly by Karagiannis et. al have been made.

Introduction

- In this paper we present a study of traffic patterns on the Greek School Network
- We studied in the monitored network
 - the behavior of flows
 - the behavior of the packets
 - the use of each protocol
 - the use of each well known application
 - The use of Peer-to-Peer services
 - The traffic locality phenomenon
- Benefits
 - Understand the impact of network changes and services
 - Improve network usage and application performance
 - Reduce IP service and application costs
 - Optimize network costs
 - Understand the Impact of P2P applications
 - Background to the administrators for
 - dimensioning the network
 - congestion control
 - network management

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Greek School Network Architecture

 Nationwide network that spans across Greece. Connects all schools of primary and secondary education including administrator offices.

СТІ

- Hierarchically structured into three layers.
 - The Backbone network
 - The Distribution Network
 - The Access Network

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Measurement Methodology

- All the measurements took place in the PATRAS prefecture from October 24 00:00:00 GMT+02:00 2004 to March 18 23:30:00 GMT+02:00 2005.
- Monitoring System
 - Cisco NetFlow
 - In terms of NetFlow, flow is defined by Seven Unique Keys:
 - source IP address
 - destination IP address
 - source port number
 - destination port number
 - layer 3 protocol type
 - TOS (Type Of Service) byte and
 - Input logical interface
 - FlowScan
 - cflowd
 - RRDtool

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Traffic Statistics - Services

COMPUTER

TECHNOLOGY

Traffic Statistics - Services

- Outgoing traffic in term of bytes
 - 50% is P2P

COMPUTER

TECHNOLOGY

CTI

- 19% is HTTP
- 25.6% is unknown
- Incoming traffic in term of bytes
 - 37% is P2P
 - 30% is HTTP
 - 25.6% is unknown

- DNS and SNMP use UDP
 - Large fraction of the flows, small fraction of the packets and an even smaller fraction of the bytes transferred
- HTTP (web) application
 - The profile of its daily load distribution fits closely the corresponding profile of the TCP protocol.

Traffic Statistics - Protocols

COMPUTER

TECHNOLOGY

Traffic Statistics - Protocols

COMPUTER

TECHNOLOGY

СТІ

Traffic Statistics – Flow Analysis

- 87% of the flows carry 5-12 packets
- The majority of the flows last 6 6.5 sec.
- Data transfers*
 - interactive: TCP-telnet, ICMP, UDP-NTP
 - transaction oriented: TCP-FTP, TCP-SMTP
 - bulk data transfer: TCP-FTPD, TCP-WWW
- A cross-check of the findings of k. Claffy et al. at "Traffic Characteristics of the T1 NSFNET Backbone".

- Dual-modal pattern
- Predominance of small-sized packets caused
 - by TCP control segments and
 - by HTTP application

- Large size packets caused
 - By Ethernet full size packets

and

- By p2p applications
- Communication Networks Laboratory -

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Traffic Statistics – Traffic Locality

COMPUTER

TECHNOLOGY

CTI

- Outgoing traffic: The 50 most busy sources (of the 6188) in a 5-minute sample, are responsible for
 - 94.5% of the bytes
 - 93.1% of the flows
 - 90.9% of the packets.
- Incoming traffic: The same users:
 - 76.6% of the bytes
 - 77.5% of the flows
 - 52.5% of the packets.
- The same results were observed in the 250 minutes samples.

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Peer-to-Peer Services

Protocol	outgoing traffic			incoming traffic		
	bits %	packets %	flows %	bits %	packets %	flows %
BitTorrent	25,6	17,9	5,9	23,3	18,7	7
eMule	19,5	16,1	12,8	10,6	14,3	14,6
Napster	3	2,5	0,3	2,2	2,3	0,4
Gnutella	0,3	0,3	0,2	0,2	0,3	0,2
Kazaa	0,2	0,2	0,1	0,4	0,2	0,1
Direct Connect	0,1	0	0	0,1	0	0
Total	48,7	37	19,3	36,8	35,8	22,3

• Very Difficult to identify P2P traffic

COMPLITER

С

- The 3rd generation P2P systems use arbitrary ports for the P2P connections
- Still 25% of the traffic is unknown
- 32,3% 48,7% of the outgoing and 14% 39% of the incoming bytes are caused by P2P services

Communication Networks Laboratory -

Peer-to-Peer Services

COMPUTER

TECHNOLOGY

CTI

- P2P services are active 24 hours per day
 - + they do not follow the traffic pattern of the overall traffic
- Emule and BitTorrent were the two most prevalent protocols.
 - After 19/12/2004 the use of BitTorrent was reduced significantly because of the shut down of Suprnova.org

RESEARCH

COMPUTER TECHNOLOGY INSTITUTE

СТІ

- The arrival rate remains relatively constant throughout the day.
- The same pattern on a weekly interval
 - A constant rate during the weekdays and a different rate (but constant again) during the weekends.

- The majority of P2P flows contain a relatively small number of packets.
- The average size of a P2P flow was 9 packets.
- P2P applications belong to the bulk data transfer-style applications.
- The mean P2P flow size is 6.1 Mbytes which is much bigger than the mean flow size of web traffic and other bulk data transfer services.

- Network Architecture
- Measurement Methodology
- Traffic Statistics
 - Service Analysis
 - Protocol Analysis
 - Flow Analysis
 - Packet Size Analysis
- Traffic locality
- Peer-to-Peer Services
- Conclusions

Summary – Future Work

- The traffic has daily and weekly periodic components as well as a long-term trend
 - Non-stationary model
- The traffic is increasing in time
 - In 4.5 months 100% increment of traffic rate during the peak hours
- TCP by far dominates the network traffic.
- HTTP and P2P services are the most frequently used applications
 - have to be taken into account in a future network extension
 - Tools like FlowMonitor have to be implemented
- Strong traffic locality phenomenon. 1% of the sources correspond to 95% of the outgoing bytes.
- The majority of the flows last a few seconds and carry few packets
- Predominance of small packets
- Apply realistic models that captures all the trends of the traffic.

Communication Networks Laboratory -

Analyzing Traffic across the Greek School Network

Thank you!

LANMAN 2005, 14th IEEE Workshop on Local and Metropolitan Area Networks, 18-21 September 2005, Chania, Crete, Greece

Communication Networks Laboratory -